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Mass transport close to the sea bottom is investigated for simple harmonic waves 
around a body with a small horizontal dimension. For gravity waves it is shown that 
the mass transport very near the bottom points towards a convex corner, but near 
the top of the boundary layer its direction reverses. Possible implications for silting 
near a pile and a harbour entrance are discussed and some experimental evidence 
given. For tides, the Coriolis force introduces a spiralling variation within the boundary 
layer, and possible inferences for coastline modification are drawn. 

1. Introduction 
The phenomenon of acoustic streaming near a wall was first shown by Rayleigh 

(1883) to be caused by viscosity in the boundary layer. Longuet-Higgins (1953) 
extended the theory to water waves and further showed that the Stokes drift must be 
superimposed on the preceding Eulerian drift in order to follow a dye particle. The 
sum, which is a Lagrangian quantity, is now called the mass tramport velocity, 
knowledge of which is of interest in understanding the movement of sediments on 
the sea bottom. The details of two-dimensional problems (in z and z, horizontal and 
vertical) have been completed by Longuet-Higgins for arbitrary inviscid oscillatory 
flows outside the boundary layer. For three-dimensional gravity waves, general 
formulae for the Eulerian streaming have been worked out by Hunt & Johns (1963), 
who, however, gave only the mass transport near the outer edge of the viscous layer. 
In Kundt’s tube with standing acoustic waves, it is known that the heavy dust par- 
ticles tend to roll along the bottom towards the nodes, while the light particles tend to 
drift in suspension towards the antinodes. Similar behaviour is also observed in 
gravity waves. This is clearly the effect of the vertical variation of mass transport 
through the boundary layer. For arbitrary inviscid oscillatory flows, such variation 
can be inferred from the Eulerian results of Hunt & Johns as by Carter, Liu & Mei 
(1973), who also demonstrated in a wave tank the influence of mass transport near 
the solid bottom on the tendency to sand-bar formation. Relevant field evidence of 
submarine bars near Escambia Bay, Florida, has been pointed out by Lau & Travis 
(1973). The formulae of Carter et al. are given in terms of derivatives of the inviscid 
oscillatory velocity field just outside the boundary layer, so that it is in principle a 
straightforward matter to obtain the mass transport distribution for any complex 
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wave system. Thus far, however, applications have been limited to essentially one- 
dimensional waves or to simple obliquely incident and reflected waves, and physical 
consequences in truly two-dimensional waves (three-dimensional flows) have not been 
sufficiently explored. 

In  the case of tides in a rotating ocean, Hunt & Johns (1963) obtained, by assuming 
the tidal flow to be purely harmonic, results for the outer edge, but omitted the interior, 
of the bottom boundary layer. Specific applications are also for essentially one- 
dimensional waves. Moore (1970) further points out that the Eulerian drift outside 
the boundary layers of a rotating ocean is non-zero in general and is forced by non- 
linearity. The only strictly two-dimensional wave problem treated seems to be that 
studied by Longuet-Higgins (1970) for a small circular island, but is on the mass 
transport just outside the boundary layer near the vertical wall. 

In  this paper we discuss the effect of two-dimensional bodies, such as piles, break- 
waters in gravity waves or islands and estuaries in tides, whose characteristic dimen- 
sions are much less than the wavelength. In  gravity waves an explicit formula is 
inferred from Carter et al. which leads to interesting physical consequences for bodies 
of engineering interest. Experimental evidence of the induced sediment motion is 
given. In  tides, new results for the mass transport throughout the bottom boundary 
layer are derived on the basis of constant viscosity. Ekman effects are brought out. 
Numerical results for a peninsula and an estuary are given. 

J .  Lamoure and C .  C .  Mei 

2. Mass transport by gravity waves near a small body 
2.1. A general formula 

Let 2 and y be the local horizontal and z be the local vertical co-ordinates fixed on the 
sea bottom. Considering only monochromatic waves with frequency w, the inviscid 
velocity field of the wave near the solid bottom may be denoted by 

U, = Re (Uoetwt, V , e g w t ) ,  

where U,, = Uo(x, y) and V, = V,(x, y). Using the model of constant viscosity, the hori- 
zontal components of the Lagrangian mass transport velocity within the Stokes 
boundary layer 0 < z/8 < 00, 8 = (2v/o)*,  are given by Carter et al. as follows: 

1 au* au,* a v,* 
(UL) = 40 Re [GI uo$ + (GI - G,) UoF] , 

6 = 218. (2.3) 1 where G, = 8ie-(1+215 i- 3( I - i)e-g- 3 - 6i, 
G, = 4ie-(l+235 + (1 - 2i)e-Y- 1 - 2i, 

The above result does not hold in a small corner within a horizontal distance O(6) 
from the vertical wall. 

We remark that the oscillatory boundary layer near a sea bottom is usually tur- 
bulent. From experiments with turbulent boundary layers on rough bottoms, the 
order of magnitude of the eddy viscosity is 10 - 100 cm2/s, except near the wall. The 
corresponding estimates for 8 are 6.6 N 17.8cm for a typical swell period of 10s. It 
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must be pointed out that the eddy viscosity is known experimentally to be a function 
of z and t ;  see Johnson & Carlsen (1976) and Horikawa & Watanabe (1968). Since a 
complete picture is still lacking, the simplest model is adopted here. 

Let us assume that the sea depth h is constant and that all solid bodies have vertical 
walls spanning the entire depth of water. The first-order inviscid flow field can then 

where igy cosh k(z + h) eiot 

o coshkh 
$=-- , oa = gktanhkh 

with y satisfying 

V2y + k2q = 0 outside the body (V2 = a2/axa+ a2/ay2), (2.6) 

and aqpn = 0 on the body. 12.7) 

If the controlling horizontal scale of the bodies a is so small that ka < 1, then it is well 
known that in the near field of the body, where r/a = O(l ) ,  the Helmholtz equation 
may be approximated by the Laplace equation, which implies that locally the velocity 
field is incompressible and irrotational in the horizontal plane : 

aul av, au av, 
ax ay ay ax 

w1 = O(kau,), -+- = O(ka)2, -I-- - - O(ka)2. (2.8 a-c) 

The same approximation holds for U, and V,, where 

To the leading approximation the near-field velocity may be found by standard 
methods for steady potential flow, but is indeterminate up to a constant factor which 
may be found by matching with the inner approximation of the far field, for kr = O( 1). 
Although this analysis may be carried out (see, for example, Buchwald 1971 ; Mei & 
Unluata 1976; etc.) it  is unimportant for our purposes here and will not be pursued. 
Since U, and V, share the common factor of a complex constant, their phases drop out 
in (2.1) and (2.2). Hence U, and V, will be taken as real for brevity. Using (2.8) for U, 
and V, we easily obtain the simple result that 

where 

and U, 3 (U,, V,). This is a simple result stating that at  any height f the vector (uL) 
has either the same or the opposite direction to the gradient vector V)U,12 of the in- 
viscid field. Thus (uL) is maximum where VIU,12 is maximum, which usually, but not 
necessarily, occurs at sharp convex corners. The vertical variation is given by the factor 
HL = aReG,, which changes sign at about z r 8 as plotted in figure 1. In  particular, 

and 

(uL) z f(4o)-lVIUOIa for f < 1 ( 2 . 1 2 ~ )  

(ut) z - (~w)-~VIU,(~ for f B 1. (2.12b) 

Thus, near a sharp corner, where the inviscid velocity has the largest gradient, the 
mass transport is greatest, and is directed towards the corner near the bottom of the 
boundary layer and away from the corner near the top of the boundary layer. 
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FIUURE 1. Vertical variation of Lagrangian mms transport in gravity waves 
near a small body; 6 = z/8.  

It should be pointed out that in the near field the Stokes drift, defined by 

(2.13) 

is negligible for small h, so that the mass transport is just the Eulerian drift. This 
is due partly to the fact that the second term on the right of (2.13) is negligible; see 
(2.8a). Furthermore, in non-rotating fluids u1 and U, are coplanar and proportional 
to each other. Since U, may be taken to be real, the two factors in the first term of 
(2.13) are out of phase by in, which implies a zero average for their product. 

With regard to sediment transport, the above results suggest that heavy sediment, 
once mobilized by the first-order velocity field to roll on the bottom, may be attracted 
towards and deposited near a convex corner. This striking result may appear puzzling 
as one would instinctively feel that sediment should accumulate near the stagnation 
points, where U, = V, = 0,  and be swept away where (U,,V,) is large. The following 
explanation may help to clarify the physical mechanism. 

Consider a vertical column of fluid of unit square cross-section with its base at the 
level z inside the boundary layer and its top at the outer edge of the boundary layer. 
The net mean stresses acting on the column are the mean shear stress at  the base 
,ua(u)/az, the mean normal pressure gradient 4pVU; and the gradient of the normal 
Reynolds stress - tp(Vu2,), the last two acting on the vertical sides. Because w1 2 0, 
the shear components of the Reynolds stress are negligible. Equating the forces, we 
have 

The integral on the right side is clearly coplanar with and proportional to VU:; so, 
therefore, is (u). 
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___) 

FIGURE 2. Mass transport velocity vectors in gravity waves near the solid 
bottom in the presence of a circular oylinder. 

2.2. Examples 

As a first example we take a circular pile rising vertically from the sea bottom to the 
free surface. If the incident wave is directed along the - x  axis the free-surface dis- 
placement in the near field (ka = O( 1)) is approximately 

q z A[1 +ikcos8(r+a2/r)], (2.14) 

where ( r ,8 )  are polar co-ordinates with origin at the centre of the cylinder, whose 
radius is a. The corresponding components ( u ~ ) ~  and ( u ~ ) ~  of the mass transport can 
be calculated to be 

In figure 2, the mass transport vectors (uL) near the bottom ( E  < 1.6) are plotted for 
the region y > 0. There is a convergence towards the points r = a, 8 = & in, which 
are on the diameter parallel to the crests. Near the points on the diameter perpen- 
dicular to the crests ( r  = a, 8 = O , m ) ,  (uL) = 0. The directions of the vectors are 
reversed for 5 > 1.6 while the magnitudes remain in the same proportion. Note that 
adding a right-going wave of a different amplitude simply changes the factor Aik in 
(2.14) to a different complex constant, but does not change the relative magnitude 
of (uL). The same is true if the cylinder is in a partially standing wave. 

The case of an elliptical pile with principal axes a and b can be easily worked out 
using the Joukowski transformation; see Lamoure (1  976). 

As another example, let us consider a semi-infinite breakwater with a rectangular 
head of thickness 2a. The diffraction problem for small ka has been studied by Crighton 
& Leppington (1973) by the method of matched asymptotics. The potential solution 
in the near field may be approximated by 

q r (4Alm)etiz (ka)S cos toi Re T ( z / ~ ) ,  (2.16) 

where 7 is the following analytic function of the complex variable 2 = x + iy: 

+n(Z/a - i) = ~ ( 7 2  - 1)S - In 17 + (72  - 1 I*], (2.17) 
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FIGURE 3. Mass transport velocity vectors in gravity waves near the solid bottom 
in the presence of a breakwater with a rectangular head. 

which maps the neighbourhood of the breakwater head from the Z plane to the upper 
half of the 7 plane. The mass transport vector a t  a height 5 < 1.6 above the bottom 
is shown in figure 3. Strong convergence towards the corners is evident. This suggests 
that mass transport may be partly responsible for the narrowing of a harbour entrance, 
which then requires dredging to maintain its opening. 

Of course, the present prediction fails in the neighbourhood where the local oscilla- 
tory current is so large that separation is significant. However, in sufficientlydeep 
water offshore the velocity U, can be small enough to avoid separation and yet large 
enough to move the sediment. The present theory is then relevant, assuming that 
turbulence in the boundary layer does not alter the qualitative conclusions. 

2.3. Experimental evidence of sediment transport 

A simple demonstration was made at  our laboratory with a vertical circular pile of 
diameter 6.5 ern in a water depth of 16 em. A standing wave of period 1.125s and 
amplitude 24cm was maintained. The depth of the laminar boundary layer below 
E = 1.6 was 1.6 S g 1.12 mm. A sediment mixture was then spread sparsely around the 
cylinder. The mixture consisted of roughly equal portions of beach sand of mean 
diameter 0-3mm and Dow Chemical polystyrene spheres of diameter 0.5 mm. The 
cylinder was placed at  a nodal line of the waves where the oscillatory velocity was 
largest near the bottom. The plastic spheres, being only slightly heavier than water, 
were easily made to roll on the bottom by the oscillating fluid. On average they first 
drifted towards the cylinder, but were not deposited there and were bounced away. 
They served the purpose of mobilizing the much heavier sand, which would otherwise 
not have been moved by the waves. At first a ring of the floor surrounding the cylinder 
was wiped clean. Within a few periods sand particles were attracted towards the 
cylinder and piled up along the diameter parallel to the wave crests. Figure 4 (plate 1)  
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shows the final view from the side of the wave maker; the dark spots, stripes and 
patches were covered with sand while the lighter background was the floor covered 
with a plastic sheet. The sand ripples away from the cylinder were parallel to the 
wave crests, hence they served to indicate the direction of the latter. The free surface 
in the neighbourhood was quite rough but the particles beneath oscillated in a pre- 
dominantly simple harmonic manner as far as the eye could detect. 

We also experimented with a long straight estuary of breadth 17.5 cm with a narrow 
entrance which was formed by attaching two half circular cylinders of diameter 
7.5 cm. The entrance was thus smooth and of breadth 10 cm. The free surface in the 
estuary was somewhat resonated by adjusting the end wall in order to achieve sufficient 
velocity to move the sand. Deposition was observed near the cylinder a t  the narrowest 
points of the entrance, as shown in figure 5 (plate 1). The wave maker was shut off 
during photography so as to give a clear picture of the bottom. Without rounding 
the entrance, earlier experiments indicated significant separation near the sharp 
corners, so that sediment was all swept away. 

3. Mass transport in tides near a small body 
3.1. The inviscid $ow in the near field 

We shall first recall some results for the inviscid wave field near the body. For sim- 
plicity, the ocean depth h is assumed to be constant. To the first order, the free-surface 
elevation of a simple harmonic tide 

5, = fr [q e+@t + v* e- iwt ]  

is again governed by (2.6), with 

k ' = 0 8 [ 1 - ( y ) 2 ] ,  gh 

where Q is the angular velocity component along the local vertical, which is 

277 sin (latitude)/day, 

also taken to be constant. The velocity field 

U ,  = if(U,ecwt+U:e-c"t) 

is given by UO = =* ( - i w - 2 S z x ) V q .  

On the solid boundary U , . n  = U , . n  = 0.  (3.3) 
In the neighbourhood of the small body where ka g 1, (2.1) may again be approxi- 

mated by Laplace's equation (see, for example, Longuet-Higgins 1970; Buchwald 
1971). Buchwald further pointed out that if a complex potential 

W ( Z )  = @(x, Y) + i v x ,  9) (3.4) 

such that a@/an = 0 on the solid body ( 3 4  

is found then the solution in the near field may be taken as 

u, = CV@, (3.7) 
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where C is an arbitrary complex constant. Thus the near field again reduces to that of 
a usual potential flow problem for W where some real coefficients as well as C must be 
determined by matching with the far-field solution. More specifically, when the lateral 
boundary is a long and straight coastline with B small peninsula or a narrow estuary, 
the physical domain of 2 may be mapped onto the upper half 7 plane. For several 
geometries of practical interest it may be shown that the leading term for W is either 
7 or In 7, i.e. 

C,T+ constant, peninsula in a straight coast, ( 3 . 8 ~ )  

C11n7+ constant, estuary or bay mouth in a straight coast, (3.8b) 

where C, and C, are real. Combining with (3.7), U, is undetermined only up to one 
complex constant factor CC,, or CC, to the leading approximation. Thus U, may be 

(3.9) 
represented by 

where U, is defined to be real and y is constant. 
It has been pointed out by Moore (1970) that the second-order mean motion in the 

inviscid region is non-trivial in general. Under the present circumstances, it may be 
inferred from his conclusions that the mean motion does not interact with the induced 
stream owing to viscosity and can be treated separately. We give a slightly more 
direct argument here. The averaged equations for the mean motion ((UJ,(~,)) at 

V .  (hU& + V . (gzU,) = 0, (3.10) 
second order are 

2a x (U,) = -gv(g,)-(u,.vu,). (3.11) 

By use of the linearized equations of continuity and momentum it can be shown that 
the second term in (3.10) vanishes. Since h = constant, it follows that (U,) is solen- 
oidal. Since U, is approximately irrotational for small ka, we have 

Uz.VU, = tvUg(i+O[(ka)2]). (3.12) 

Upon substituting this result into (3.11) it  is easily seen that (U,) may be ‘solved’ by 

(U,) = ug’  (52) = c g -  (UWg,  (3.13a, b)  

where (uu, c,) is a geostrophic flow constrained by other global boundary conditions. 
The term -(U;)/2g in (3.136) is merely the wave set-down, generating no current 
in the inviscid region; its gradient, however, plays a dynamic role in the bottom 
boundary layer as will be evident later. Once ug has been found, its effect in the bottom 
boundary layer is a standard Ekman solution 

U,{I - exp [ - (1 + i) z( Q/v)~]) 

and can be added to the wave-induced motion under study; it will therefore be ignored 
in what follows. 

J .  h m r e  and C. C. Mei 

W = (  

U, = +U,[ei(Wt+Y) + e-i(~t+~)], 

3.2. TheJirst-order $ow in the Stokes boundmy layer 

In  terms of the small wave slope, the horizontal Eulerian velocity vector is expanded 
as u = u1 + u, + . . . . The first-order equation is 

(3.14) 
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In  terms of u1 the vertical velocity in the boundary layer is obtained from continuity: 

5 au, 
w1 = -6Jo (-+%) ax ay dg, g = ~ / 6 .  (3.15) 

For reference, we remark here that, for a wave period of 12 h and an eddy viscosity of 
10 N 100 cm2/s, 6 is 3.7 - 11-7 m. The first-order problem has been solved by Hunt & 
Johns; their results are summarized below: 

where 

(3.16a) 

(3.16b) 

(3.17a) 

F2(,Z) = &i[e41+04 - e-Cl+.ltPE], (3.17 b )  

with a = (1 + f )4, /? = (1  -f)4, f = 2n/fJJ. (3.18) 

From here on we restrict the analysis to small ka so that U, and V, again satisfy the 
Cauchy-Riemann conditions (2 .8b,  c). It follows by substituting (3.16) in (3.16) that 

w1 = 0. (3.19) 

In  view of (3.9) we take U, to be real. For later convenience it is desirable to represent 
a vector U = ( U ,  V )  in the complex form V = U + i V  so as to write 

Uz = EV,, El = FD,, (3.20a) 

E = #[e.lW+y) + e-ibt+y)], (3.20 b) 

F = Re (Fleiut) + i Re (Fzeiut), (3 .20~)  

where F1([) and .F,(E) are given by (3.17a,b). 

3.3. The second-order drift 

At second order the boundary-layer equation is 

~ + 2 8 x u , - v ~  = u,.vu,- u,.V+w,-) a ul. 
at a22 ( az 

(3.21) 

For small ka, the right-hand side reduces to 

mu$ - (3.22) 
on account of (2.8). 

It is in the nonlinear terms that the complex representation greatly simplifies the 
algebra, which would otherwise be prohibitive. We define the complex gradient 
operator as 

V = alax + i spy, (3.23) 

so that for any 0 = U + i V ,  with U and V real, 
- -  vp12 = (alax-t ia/aY)(u2+ v2) = v U 2 .  (3.24) 

Now (3.21) may be written in complex form as 
- -  

az2/at + 2 i ~ z , -  o i i d a Z 2  = ~v(~u1l2-- p l 1 2 )  

= #(pp- pp)vpop. (3.26) 
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The second equality follows from (3.20~-c). Upon taking the time average we obtain 

( a 2 p p -  ~ 2 )  (z2) = - ~ - y p 1 2 -  p12)Tpopy (3.26) 

where c = (1 +i)fk (3.27) 
The boundary conditions are 

J .  Lamoure a d  C. C. Mei 

(a2) = 0 on c = 0, (U,) = finite as ~ - + C Q .  (3.28) 

The geostrophic flow u, is not considered here in view of the remarks at the end of 
$3.1. The left-hand side of (3.21) can be identified as the differential operator which 
governs the steady Ekman boundary layer in a rotating fluid. Unlike the classical 
problem in oceanography, where one encounters a homogeneous Ekman equation 
with inhomogeneous boundary conditions, the reverse happens here, where the forcing 
is due to the wave-induced Reynolds stresses throughout the boundary layer. The 
time average of the right-hand side of (3.26) is easily calculated. Letting 

( T i 2 )  = ( 2 ~ ) - l  HE(t)VlDOl2 (3.29) 

we obtain (d2/dt2-C2)HE = - ( 1 -  IF112-]F!12), (3.30) 

where 1 -  lFl12- (F2'2(2 = ~ ( e - q ~ + + - q * 5 - e - 2 ~ 5 ) + ( e - s 5 + e - s * 5  - e-285)] (3.31) 

with a and p defined in (2.8) and 

q = (1 +i)a ,  s = (1 + q p .  (3.32) 

The solution satisfying (3.28) may be straightforwardly obtained: 

where the second bracket consists of the same terms as the first except that a and q 
must be replaced by p and s, respectively. We point out that, when f = 4, s = c = 
(1 + i)/2*, and H E  is not singular since (e-"5 - e-eS)/(s2 - c2) remains finite. 

Since most existing analytical results for plane potential flows can be expressed 
in terms of the complex potential W ( Z ) ,  it is desirable to rewrite the nonlinear term 
VIUola in (3.26) in terms of W directly. We define W by 

(3.34) 

- _  

Uo = Uo+iV, = (dW/dZ)* = W * .  

Note that if M = (Hz ,Mu)  is any vector and N = (N,,N,) is any solenoidal and 
irrotational vector then 

M.VN = M ~ % + M ~ % ,  M ~ - - - M , ~ ) ,  ( aY 
of which the complex form is 

a - d B  
ax dZ ' 

M . V N  = (M, - iM)- (N ,+ iN, )  = M * -  

Accordingly, the complex form of the mean Eulerian drift may be given as 

(iiE> (z2) = +W-lHE( t )  w' w"*. (3.36) 
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In order to obtain the Lagrangian mass transport, one must add the Stokes drift 

(3.36) 

Using (3.16) and (3.17) the right-hand side takes the following complex form: 

(.jt: P*&) a: 3, 
which can be reduced to 

(21,) = 0-l HS(5) W' W"*, (3.37) 

where HE([) = Wlp:-pl"2) 
= - +i[(e-q5 + e+Y - e - M )  - (e-g + e-8'6 - e-'VE)], (3.38) 

after using (3.32). Note that H, is purely imaginary and vanishes for f = 0. 
Finally, the total Lagrangian drift is given by 

(%A) = (G2) + (G,) = u-1 HL W' W"*, 

+{a+ 8, P +s, q* + s*), (3.39) 

where the second curly bracket is obtained from the first after the changes indicated. 

3.4. The vertical dependence 
The spatial variation of the horizontal factor W' W"* is independent of earth rotation, 
hence it is common to gravity waves and tides. Details depend on the specific geometry 
of the solid boundaries and will be discussed for a few examples later. The vertical 
variation of the mass transport through the boundary layer is entirely embodied in 
the factor HL([) ,  which depends on f = 2aIw.  For = 0, i.e. gravity waves, we have 

a = P =  1, q = s =  l + i ,  c = 0, 

so HLreduces to $Re(?,, cf. (2.11). 

HL([) for small 5: 

where 

Near the bottom, where heavy sediment is likely to be affected, we approximate 

HL(8 z Z m 5 ,  (3.40 a) 

1 

l l  

1 
l )  Hao) = + $6 [A (ft + (1 + f )t +f2 + (1 - f )t + (1  + i) f t + (1 -i) (1 + f )t 

1 

1 
+ (1 + i) f t + (1  - i) (1 -f)C (1 +i)fJ + 2( 1 + f ) t -  (1 +i) f t + 2( 1 - f )t 

(3.40b) 

is a complex number and is plotted in figure 6. At the limit f = 2Q/w = 0, HL(0) is 
real. But as f increases, i.e. moving north in the northern hemisphere, there is an 
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increasing tendency for HL to point away from the negative real axis. The neighbour- 
hood off = 1 is excluded from our discussion to avoid singularity in the tidal theory. 
Let 8,, 8, and e2 be the phases of the complex quantities (uL), &Vl UI2 and H’(0) .  Itis 
clear that 8, = 8, + 8,. Since 8, c 0, near the bottom of the boundary layer the mass 
transport vector ( u L )  slants to the right of the vector VIU,(2 in the northern hemi- 
sphere. 

The variation of HL(6) for all 6 is shown in figures 7 (a) ,  ( b )  and (c) for f = 0.25, 0.5: 
and 0.75. The general feature is a complicated turning, stretching or shortening of the 
complex vector HL as 6 increases. For a larger f the vector wanders away from the 
real axis to a greater extent. For all f += 0, HL+ 0 as g+00, which is the consequence 
of w1 = 0 owing to the assumption of small ha. Note that, in terms of S = (2v /w) t ,  the 
Stokes-layer thickness, and aE = (v/!2)4, the Ekman-layer thickness, the ratio 
f = 2Q/w is equal to (8/8E)2. Thus in the case f = 0 the finite limit shown in figure 1 
is occurring at  a depth much less than 8,. 

Apart from HL, the vertical variation of the Eulerian drift HE may be of interest 
in ocean circulations; a somewhat related study on large-scale depth-averaged circu- 
lation due to periodic wind stresses has been made by Veronis (1966). In  figures 8 (a), 
( b )  and (c ) ,  we show the variation of HE 0s. 6 for f = 0.25, 0.5 and 0.75; the behaviour 
is different from the Ekman spiral in that HE = 0 for both 6 = 0 and 6 = 00. The total 
horizontal flux within the boundary layer is clearly 

- _  

The integral 

(3.41) 

’ ] (3.42) 
1 1 

+ s- + s*c(s + c )  - 2pc( 2 p  + c )  
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FIQURE 7. Tho factor H L  representing the vertical variation of the Lagrangian mass transport 
near a small body owing to long-period oscillations in a rotating fluid. A number near a dot 
represents the normalized height z/S above the bottom. The complex vector from the origin to 
the dot gives the complex factor HL at that height. (a) f = 0.25. (6) f = 0.5. (c) f = 0.75. 
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FIUURE 8. The factor H E  representing the vertical %ariation of the Eulerian induced streaming 
near a small body owing to long-period oscillations of a rotating fluid. A number near a dot 
represents the normalized height z/S above the bottom. The complex vector from the origin tfo 
the dot gives the complex factor H a  at that height. (a) f = 0.25. (a) f = 0.50. (c) f = 0.75. 
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FIUURE 9. The factor I E  for the mean Eulerian flux in the entire bottom boundary layer near 
a small body owing to oscillations of a rotating fluid. A number near a dot represents the value 
off = 2R/o. The complex vector I E  is obtained by connecting the origin and the dot. 

2 
Irn Hs 

FIGURE 10. The factor Im H s  representing the vertical variation of the horizontal Stokes drift 
in an oscillatory boundary layer near the bottom of a rotating fluid in the presence of a small 
body. ReHs G 0. 



430 J .  Lamoure and C. C. Mei 

I L 

is a continuous function off and is plotted in figure 9. It is singular a t  f = 0 and 1. 
This flux, which is caused by the ever-present tides, may be worth attention as a local 
modification of wind-driven currents. 

The quantity H,, which is purely imaginary, is plotted in figure 10. The correspond- 
ing Stokes drift is always a t  right angles to VU;; it  is responsible for reducing the 
directional spread of HL in comparison to HE. 

3.5. The horizontal distribution of mass transport 
We plot the horizontal distribution of (uL) near the bottom 6 = 0.1 for only an 
elliptic peninsula (figure 11 a),  and a rectangular estuary (figure 11 b )  in the northern 
hemisphere. The tide period is assumed to be 12h and the latitude &ON, so that 

FIQURE 11. Mass transport vectors near the bottom in the presence of (a) an elliptical peninsula 
and ( b )  an estuary.f = 2R/w = 0.707, 5 = 0.1. 
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2L!2/w 2 0.707. The incident wave in the far field may be a Kelvin wave. All magnitudes 
are relative. 

As pointed out before (uL) slants to the right of the local vector of VlU,,l. Thus for 
a peninsula or an estuary along a western (eastern) coast, heavy sediment may tend 
to accumulate in the neighbourhood slightly to the south (north) of sharp convex 
corners provided that flow separation is unimportant. The rightward shift increases 
with latitude. Similar conclusions may be drawn for tidal inlets of rivers or between 
barrier islands. We stress that, since flow separation is not accounted for here, the 
sharp corners at an estuary entrance must be rounded for the theory to be relevant. 
In addition, the definite behaviour of sediment is a complex matter about which our 
knowledge is meagre. The present deductions from fluid behaviour alone do no more 
than indicate the tendency. 

In closing, we remark that, by removing the assumption of small ka andincorporating 
the geostrophic flow, an extension of the present analysis on tide-driven mass transport 
may add to our understanding of the three-dimensional picture of large-scale ocean 
circulation. 
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FIGURE 4. Wavo-induced sand nccumulalion near a circular cylinder. Da,rk spots, st,ripes and 
patches indicate sand. The WBVH crests are parallel to thc ripple crc:sts. Sand particles wore 
removed initially from a ring of width 3 cin surrounding tilt: cylirtdor. 

FIGURE 5 .  Wave-induced sand accumulation near a narrow-mouthed estuary. Waves were 
normally incident. The wave maker was shut off after the accumulation was established and 
before photography. 
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